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LETTER TO THE EDITOR 

Surface Hall effect in magneto-electric media 

A Widom, M H Friedman and Y Srivastava 
Physics Department, Northeastern University, Boston, Massachusetts 021 15, USA 

Received 15 November 1985 

Abstract. The nature of the bulk energy per unit volume in magneto-electric crystals implies 
an unusual form of Hall effect confined to the boundary surface crystal faces. 

The most interesting features of the Hall effect are easily deduced by purely thermody- 
namic reasoning (Widom 1982). This is especially true for magneto-electric phenomena 
(Landau er al 1984) which have been of very long standing interest (O'Dell 1970). 
The purpose of this letter is to note that the bulk adiabatic magneto-electric tensor 
completely determines the boundary surface Hall impedance in a magneto-electric 
crystal. This result is worthy of note for laboratory determinations of this important 
tensor. 

Recall that the adiabatic magneto-electric tensor is defined by 

--aij = (a2/aE,aBj) U(E,  B, S )  

where E and B represent the electromagnetic fields, S represents the entropy per unit 
volume, and U represents the energy per unit volume of the magneto-electric crystal. 

Alternatively, with P as the electric dipole moment per unit volume, and M as the 
magnetic moment per unit volume, 

aij = (aMj /aE i ) , ,  = (aP, /dBj ) , ,  (2) 

Now, let n be a unit vector normal to a crystal face on the boundary surface of a 
magneto-electric crystal. By virtue of the dipole moment per unit volume in the bulk 
crystal, the boundary face will develop a polarisation charge density per unit area 
given by 

U =  - n .  P. (3) 

By virtue of a previously proven Nyquist theorem (Widom 1984), the boundary 
surface Hall impedance RH is determined by 

-RH' = cn (do /dB)s ,E .  (4) 

Thus, from equations (3) and (4), one obtains the extremely simple (yet totally rigorous) 
result that the Hall impedance on the boundary surface face of a magneto-electric 
crystal is determined by the bulk adiabatic tensor Q in equation (2), i.e. 

RH' = cn - a - n. 

Equation ( 5 )  is the central result of this work. 
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In terms of the vacuum impedance 

Rv,, = (457/c) (6) 

(7)  

equation ( 5 )  reads 

(I?,,,/ RH) = 4 4  n - OL - n). 
Thus, a surface Hall impedance measurement (usually expected to be large on a scale 
of R,,, = 377 a) determines the adiabatic magneto-electric tensor aij component with 
both indices in the normal direction n as in equation (7) .  

Finally, it is quite interesting to note physical similarities between magneto-electric 
phenomena and spin-wave vacuum polarisation (Widom et al 1985). 
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